Construction of a Semantic Segmentation Network for the Overhead Catenary System Point Cloud Based on Multi-Scale Feature Fusion
نویسندگان
چکیده
Accurate semantic segmentation results of the overhead catenary system (OCS) are significant for OCS component extraction and geometric parameter detection. Actually, scenes complex, density point cloud data obtained through Light Detection Ranging (LiDAR) scanning is uneven due to character difference components. However, inconsistent points, it challenging complete better with existing deep learning methods. Therefore, this paper proposes a multi-scale feature fusion refinement structure neural network (PMFR-Net) cloud. The PMFR-Net includes prediction module module. innovations include double efficient channel attention (DECA) serial hybrid domain (SHDA) structure. (PCRM) used as network. DECA focuses on detail features; SHDA strengthens connection contextual information; PCRM further refines In addition, created released new dataset Based dataset, overall accuracy (OA), F1-score, mean intersection over union (MIoU) reached 95.77%, 93.24%, 87.62%, respectively. Compared four state-of-the-art (SOTA) methods, comparative experimental showed that achieved highest shortest training time. At same time, performance S3DIS public than other SOTA effectiveness DECA, structure, was verified in ablation experiment. show could be applied practical applications.
منابع مشابه
a study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولLarge-scale Point Cloud Semantic Segmentation with Superpoint Graphs
We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of largescale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich represen...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14122768